Note
Click here to download the full example code
Guassian SimsΒΆ
Gaussian k-sample simulations are found in hyppo.tools
. Here, we visualize
what these
simulations look like. We use these Gaussian simulations when comparing our
algorithms against multivariate analysis of variance (MANOVA).
Out:
/opt/buildhome/python3.7/lib/python3.7/site-packages/seaborn/cm.py:1582: UserWarning: Trying to register the cmap 'rocket' which already exists.
mpl_cm.register_cmap(_name, _cmap)
/opt/buildhome/python3.7/lib/python3.7/site-packages/seaborn/cm.py:1583: UserWarning: Trying to register the cmap 'rocket_r' which already exists.
mpl_cm.register_cmap(_name + "_r", _cmap_r)
/opt/buildhome/python3.7/lib/python3.7/site-packages/seaborn/cm.py:1582: UserWarning: Trying to register the cmap 'mako' which already exists.
mpl_cm.register_cmap(_name, _cmap)
/opt/buildhome/python3.7/lib/python3.7/site-packages/seaborn/cm.py:1583: UserWarning: Trying to register the cmap 'mako_r' which already exists.
mpl_cm.register_cmap(_name + "_r", _cmap_r)
/opt/buildhome/python3.7/lib/python3.7/site-packages/seaborn/cm.py:1582: UserWarning: Trying to register the cmap 'icefire' which already exists.
mpl_cm.register_cmap(_name, _cmap)
/opt/buildhome/python3.7/lib/python3.7/site-packages/seaborn/cm.py:1583: UserWarning: Trying to register the cmap 'icefire_r' which already exists.
mpl_cm.register_cmap(_name + "_r", _cmap_r)
/opt/buildhome/python3.7/lib/python3.7/site-packages/seaborn/cm.py:1582: UserWarning: Trying to register the cmap 'vlag' which already exists.
mpl_cm.register_cmap(_name, _cmap)
/opt/buildhome/python3.7/lib/python3.7/site-packages/seaborn/cm.py:1583: UserWarning: Trying to register the cmap 'vlag_r' which already exists.
mpl_cm.register_cmap(_name + "_r", _cmap_r)
/opt/buildhome/python3.7/lib/python3.7/site-packages/seaborn/cm.py:1582: UserWarning: Trying to register the cmap 'flare' which already exists.
mpl_cm.register_cmap(_name, _cmap)
/opt/buildhome/python3.7/lib/python3.7/site-packages/seaborn/cm.py:1583: UserWarning: Trying to register the cmap 'flare_r' which already exists.
mpl_cm.register_cmap(_name + "_r", _cmap_r)
/opt/buildhome/python3.7/lib/python3.7/site-packages/seaborn/cm.py:1582: UserWarning: Trying to register the cmap 'crest' which already exists.
mpl_cm.register_cmap(_name, _cmap)
/opt/buildhome/python3.7/lib/python3.7/site-packages/seaborn/cm.py:1583: UserWarning: Trying to register the cmap 'crest_r' which already exists.
mpl_cm.register_cmap(_name + "_r", _cmap_r)
import matplotlib.pyplot as plt
import seaborn as sns
from hyppo.tools import gaussian_3samp
# make plots look pretty
sns.set(color_codes=True, style="white", context="talk", font_scale=2)
PALETTE = sns.color_palette("Greys", n_colors=9)
sns.set_palette(PALETTE[2::2])
# constants
N = 500
CASES = [1, 2, 3, 4, 5]
# make a function to plot the guassian simulations
def plot_gaussian_sims():
"""Plot simulations"""
fig, ax = plt.subplots(nrows=1, ncols=5, figsize=(28, 6))
sim_titles = [
"None Different",
"One Different",
"All Different",
"One Not Gaussian",
"None Gaussian",
]
# plt.suptitle("Gaussian Simulations", y=0.93, va="baseline")
for i, col in enumerate(ax):
sim_title = sim_titles[i]
# rotated k-sample simulation
sims = gaussian_3samp(N, epsilon=4, weight=0.9, case=CASES[i])
# plot the nose and noise-free sims
for index in range(len(sims)):
col.scatter(
sims[index][:, 0],
sims[index][:, 1],
label="Sample {}".format(index + 1),
)
# make the plot look pretty
col.set_title("{}".format(sim_title))
col.set_xticks([])
col.set_yticks([])
col.set_xlim(-5, 5)
if CASES[i] not in [2, 4]:
col.set_ylim(-5, 5)
sns.despine(left=True, bottom=True, right=True)
leg = plt.legend(
bbox_to_anchor=(0.5, 0.17),
bbox_transform=plt.gcf().transFigure,
ncol=3,
loc="upper center",
)
leg.get_frame().set_linewidth(0.0)
for legobj in leg.legendHandles:
legobj.set_linewidth(5.0)
plt.subplots_adjust(hspace=0.75)
# run the created function for the guassian simulations
plot_gaussian_sims()
Total running time of the script: ( 0 minutes 0.634 seconds)