joint_normal¶
-
hyppo.tools.
joint_normal
(n, p, noise=False)¶ Joint Normal simulation.
Joint Normal \((X, Y) \in \mathbb{R}^p \times \mathbb{R}^p\): Let \(\rho = \frac{1}{2} p\), \(I_p\) be the identity matrix of size \(p \times p\), \(J_p\) be the matrix of ones of size \(p \times p\) and \(\Sigma = \begin{bmatrix} I_p & \rho J_p \\ \rho J_p & (1 + 0.5\kappa) I_p \end{bmatrix}\). Then,
\[(X, Y) \sim \mathcal{N}(0, \Sigma)\]- Parameters
- Returns
x,y (
ndarray
) -- Simulated data matrices.x` and ``y
have shapes(n, p)
and(n, p)
where n is the number of samples and p is the number of dimensions.