TimeSeriesTest¶
-
class
hyppo.time_series.base.
TimeSeriesTest
(compute_distance=None, max_lag=0, **kwargs)¶ A base class for a time-series test.
- Parameters
compute_distance (
str
,callable
, orNone
, default:"euclidean"
) -- A function that computes the distance among the samples within each data matrix. Valid strings forcompute_distance
are, as defined insklearn.metrics.pairwise_distances
,From scikit-learn: [
"euclidean"
,"cityblock"
,"cosine"
,"l1"
,"l2"
,"manhattan"
] See the documentation forscipy.spatial.distance
for details on these metrics.From scipy.spatial.distance: [
"braycurtis"
,"canberra"
,"chebyshev"
,"correlation"
,"dice"
,"hamming"
,"jaccard"
,"kulsinski"
,"mahalanobis"
,"minkowski"
,"rogerstanimoto"
,"russellrao"
,"seuclidean"
,"sokalmichener"
,"sokalsneath"
,"sqeuclidean"
,"yule"
] See the documentation forscipy.spatial.distance
for details on these metrics.
Set to
None
or"precomputed"
ifx
andy
are already distance matrices. To call a custom function, either create the distance matrix before-hand or create a function of the formmetric(x, **kwargs)
wherex
is the data matrix for which pairwise distances are calculated and**kwargs
are extra arguements to send to your custom function.max_lag (
float
, default:0
) -- The maximium lag to consider when computing the test statistics and p-values.**kwargs -- Arbitrary keyword arguments for
compute_distance
.
Methods Summary
|
Calulates the time-series test statistic. |
|
Calulates the time-series test test statistic and p-value. |
-
abstract
TimeSeriesTest.
statistic
(x, y)¶ Calulates the time-series test statistic.
- Parameters
x,y (
ndarray
) -- Input data matrices.x
andy
must have the same number of samples. That is, the shapes must be(n, p)
and(n, q)
where n is the number of samples and p and q are the number of dimensions. Alternatively,x
andy
can be distance matrices, where the shapes must both be(n, n)
.
-
abstract
TimeSeriesTest.
test
(x, y, reps=1000, workers=1)¶ Calulates the time-series test test statistic and p-value.
- Parameters
x,y (
ndarray
) -- Input data matrices.x
andy
must have the same number of samples. That is, the shapes must be(n, p)
and(n, q)
where n is the number of samples and p and q are the number of dimensions. Alternatively,x
andy
can be distance matrices, where the shapes must both be(n, n)
.reps (
int
, default:1000
) -- The number of replications used to estimate the null distribution when using the permutation test used to calculate the p-value.workers (
int
, default:1
) -- The number of cores to parallelize the p-value computation over. Supply-1
to use all cores available to the Process.
- Returns