MMD¶
-
class
hyppo.ksample.
MMD
(compute_kernel='gaussian', bias=False, **kwargs)¶ Maximum Mean Discrepency (MMD) test statistic and p-value.
MMD is a powerful multivariate 2-sample test. It leverages kernel similarity matrices capabilities (similar to tests like distance correlation or Dcorr). In fact, MMD statistic is equivalent to our 2-sample formulation nonparametric MANOVA via independence testing, i.e.
hyppo.ksample.KSample
, and tohyppo.independence.Dcorr
,hyppo.ksample.DISCO
,hyppo.independence.Hsic
, andhyppo.ksample.Energy
[1] [2].Traditionally, the formulation for the 2-sample MMD statistic is as follows [3]:
Define \(\{ u_i \stackrel{iid}{\sim} F_U,\ i = 1, ..., n \}\) and \(\{ v_j \stackrel{iid}{\sim} F_V,\ j = 1, ..., m \}\) as two groups of samples deriving from different distributions with the same dimensionality. If \(k(\cdot, \cdot)\) is a kernel metric (i.e. Gaussian) then,
\[\mathrm{MMD}_{n, m}(\mathbf{u}, \mathbf{v}) = \frac{1}{m(m - 1)} \sum_{i = 1}^m \sum_{j \neq i}^m k(u_i, u_j) + \frac{1}{n(n - 1)} \sum_{i = 1}^n \sum_{j \neq i}^n k(v_i, v_j) - \frac{2}{mn} \sum_{i = 1}^n \sum_{j \neq i}^n k(v_i, v_j)\]The implementation in the
hyppo.ksample.KSample
class (usinghyppo.independence.Hsic
using 2 samples) is in fact equivalent to this implementation (for p-values) and statistics are equivalent up to a scaling factor [1].The p-value returned is calculated using a permutation test uses
hyppo.tools.perm_test
. The fast version of the test useshyppo.tools.chi2_approx
.- Parameters
compute_kernel (
str
,callable
, orNone
, default:"gaussian"
) -- A function that computes the kernel similarity among the samples within each data matrix. Valid strings forcompute_kernel
are, as defined insklearn.metrics.pairwise.pairwise_kernels
,[
"additive_chi2"
,"chi2"
,"linear"
,"poly"
,"polynomial"
,"rbf"
,"laplacian"
,"sigmoid"
,"cosine"
]Note
"rbf"
and"gaussian"
are the same metric. Set toNone
or"precomputed"
ifx
andy
are already similarity matrices. To call a custom function, either create the similarity matrix before-hand or create a function of the formmetric(x, **kwargs)
wherex
is the data matrix for which pairwise kernel similarity matrices are calculated and kwargs are extra arguements to send to your custom function.bias (
bool
, default:False
) -- Whether or not to use the biased or unbiased test statistics.**kwargs -- Arbitrary keyword arguments for
compute_kernel
.
Methods Summary
|
Calulates the MMD test statistic. |
|
Calculates the MMD test statistic and p-value. |
-
MMD.
statistic
(x, y)¶ Calulates the MMD test statistic.
-
MMD.
test
(x, y, reps=1000, workers=1, auto=True)¶ Calculates the MMD test statistic and p-value.
- Parameters
x,y (
ndarray
) -- Input data matrices.x
andy
must have the same number of dimensions. That is, the shapes must be(n, p)
and(m, p)
where n is the number of samples and p and q are the number of dimensions.reps (
int
, default:1000
) -- The number of replications used to estimate the null distribution when using the permutation test used to calculate the p-value.workers (
int
, default:1
) -- The number of cores to parallelize the p-value computation over. Supply-1
to use all cores available to the Process.auto (
bool
, default:True
) -- Automatically uses fast approximation when n and size of array is greater than 20. IfTrue
, and sample size is greater than 20, thenhyppo.tools.chi2_approx
will be run. Parametersreps
andworkers
are irrelevant in this case. Otherwise,hyppo.tools.perm_test
will be run.
- Returns
Examples
>>> import numpy as np >>> from hyppo.ksample import MMD >>> x = np.arange(7) >>> y = x >>> stat, pvalue = MMD().test(x, y) >>> '%.3f, %.1f' % (stat, pvalue) '-0.015, 1.0'